Full Length Research Paper

The effect of mineral admixture type on the modulus of elasticity of high strength concrete

Kürşat Yıldız^{1*} and Latif Onur Uğur²

¹Gazi University, Technical Education Faculty, Department of Construction Education, Teknikokullar, Ankara, 06500, Turkey.

²Ahi Evran University, Kaman Vocational Collage, Kaman, Kırşehir, 40300, Turkey.

Accepted 16 July, 2009

In this article, 2 sources was studied, rich in reserves, pumice and zeolite's effects on elasticity modulus which is an important criterion of high strength concrete (HSC), for this reason, HSC was produced by pumice and zeolite's replacement for the concrete in proportion of "0, 5, 10 and 15%" to the binder mass. Deformation controlled compressive strength tests was performed on concrete samples to determine elasticity modulus. We have formed the mathematical model equations using the stress strain data obtained from the deformation controlled compressive tests. The elasticity modulus was determined for each concrete type using the secant method on model equations graphs. The elasticity modulus was also determined using some empirical equations and the relation between 2 groups of data. As a result, there is decreasing ratio of pumice replacement with increasing quantities of zeolite in high strength concrete and effects of modulus elasticity is positive in all stages of concrete age.

Key words: High strength concrete (HSC), pumice, zeolite, modulus of elasticity, mineral admixture.

INTRODUCTION

A volcanic originate pumice is a new rock in world Industry and is becoming more and more popular and useful in time, and is used in Turkish industry for the last 20 years. The Al₂O₃ in its structure gives its strength against fire and high temperature. There are 2 kinds of pumice in nature. Acidic and alkaline. Pumice has its usage in construction sector due to its high silica component. Turkey has high reserves of pumice. There has been an estimated 3 billion m³ in explored fields (Gündüz, 1998; S.P.O, 2000). Pumice is a natural pozzolana with a volcanic origin. Besides its pozzolanic properties, it has not got sufficient usage in cement industry. Although there are several studies to use it as a light aggregate in concrete production, there are only a few to use it as a mineral admixture. After searching the literature, we have find out limited number of studies on pumice's usage in cement as pozzolana. There is a suggestion of replacement of pumice powder for cement up to 15% to produce portland volcanic pumice cement (Khandaker, 2003). In

the article, convenience of volcanic ash and volcanic pumice powder in addition to cement production is studied and they substituted for volcanic ash and volcanic pumice powder for portland cement between "0 - 50%". The research includes the fresh and hardened concrete tests. The standard tests conducted on volcanic ash and volcanic pumice powder substituted for mixtures gives more encouraging results compared to volatile ash cements and it showed good potential up to 20% replacement in terms of its high setting time and lower hydration heat in mixed portland volcanic ash cement and mixed portland volcanic pumice cement production (Hossain, 2003).

Zeolites are irreplaceable raw materials to today's industry due to its crystalline structure and chemical properties. Some of the main physical and chemical properties of zeolite minerals are ion change, adsorption and dehydration and its silica content. These properties vary for each zeolite mineral and it is a function of its skeleton structure and channel and space systems cationic composition. Some or one of these physical and chemical properties of natural zeolites is benefited in all commercial applications. Although the usage and prodution of natural zeolites are increasing in the world scale,

^{*}Corresponding author. E-mail: kursaty@gazi.edu.tr. Tel.: +90 312 202 88 76. Fax: +90 312 212 00 59.

the lack of information about the size, quality and operability of the zeolite seams and its usage areas avoid utilization of the sources in Turkey. There has been approximately 50 billion tons zeolite reserves determined in Balıkesir Bigadiç (Çetinel, 1993; Mumpton, 1973).

HSC name used for chemical and mineral added concrete appeared inadequate to current researchers and considering other improvements as well, "high performance concrete" (HPC) name is preferred. Considering the production of concrete, we may not prioritize the strength at first. Endurance is a characteristic observed when in service after solidification or even much afterwards. However endurance is an important concrete characteristic which should be taken into consideration like strength and economy while producing good concrete. The concrete which can't show the necessary endurance can not be a good one. The rule of thumb to obtain a durable concrete is to produce it with a low water/cement ratio, to use well selected strong aggregate, good workmanship during installation and application of convenient construction techniques to get dense and guality concrete, and the sufficient treatment after installation (Hilsdorf, 1995).

HSC are better in terms of its workability, compressive strength and durability whether it is unhardened or hardened. HSC are special concretes having high workability with quality aggregate, super plasticizer admixtures, low water/cement ratio and silica fume which necessitates a pozzolanic material like fly ash (Nawy, 2001; Koca, 1996). There have been many researches on HSC for the last 15 years. These studies broaden the scope of the specification and cause the design of the concrete structures which goes beyond the compressive strength class C 100 (Walraven, 1999). According to recent studies, filling space effect of the minerals is as important as pozzolanic effect and for some researchers it can be more important than the pozzolanic effect (Goldman, 1992). It was seen that it is possible to produce high strength lightweight concrete using expanded clay aggregate, the cement content with 450 kg/m3 among concrete mixtures had the highest strength values, mechanical properties of concrete could be enhanced by using 10% fly ash, thus a saving in cement amount could be achieved (Subasi, 2009). Concrete is defined as a 3 phase anisotropic ductile material and shows different attitudes with different loads. The deformation amount of a body obtained from an elastic material under P load is directly proportional to load applied and the length and inversely proportional to cross sectional area of the body. Concrete is not an elastic material as it is a composite one which has ductility and varied phases. Alternatively, it can show elasticity under minor tensions. In theory, this corresponds to a value equal to 30 to 40% of the compressive strength (Mehta, 1986). Nevertheless, concrete is accepted as an elastic material in engineering calculations (Erdogan, 2003 Mindess, 1981). The σ - ϵ relationship which explains elasticity characteristics of the

concrete can be obtained by empirical methods. Concretes heterogenic internal structure shows different characteristics under load as it contains various phases like different aggregates, cement mortar matrix, various space systems, aggregate-cement mortar interface (Shah et al., 1994). Therefore, changes in one of these quality or quantities generate diverse consequences. For instance, 2 concretes having similar compressive strength values but having different compound characte-ristics and different components can show dissimilar elasticity values.

When we analyze the previous research articles about using pumice and zeolite in cement and concrete, we come across the following.

An experimental study has been conducted on the production of moderate-strength lightweight concrete with pumice, according to the ACI standard. In this article by using the gradation curves which fall within A16-C16 curves. (Turkish Standard Code, TS706) and addition of super plasticizer and air-entraining admixtures improved the strength-to-density ratio of the hardened concrete and the workability of fresh concrete. As a result of this study, lightweight concrete blocks having a minimum compressive strength of 6.56 N/mm² and a density of 1300 kg/m³ were obtained (Sari, 2005). In an experimental study to design a structural lightweight high strength concrete made with mineral admixtures, a control lightweight concrete mixture made with lightweight basaltic-pumice containing normal portland cement as the binder was prepared. The control lightweight concrete mixture was modified by replacing 20% of the cement with fly ash and replacing 10% of the cement with silica fume one at a time. A ternary lightweight concrete mixture was also prepared modifying the control lightweight concrete by replacing 20% of cement with fly ash and 10% of cement with silica fume. 2 normal weight concrete were also prepared for comparison purpose. Laboratory test results showed that structural lightweight concrete can be produced by the use of basaltic-pumice and mineral additives (Kilic et al., 2004). Increasing thinness of the natural zeolite powder lessens the pH of the environment. Increasing the quantity of zeolite powder decreases the alkali ions' concentration and it prevents the formation of silicate-gel. The reasons of decreasing alkali ion concentration are: ion change, absorption and pozzolanic reactions. It is also stated that, in addition to ion change, the porosity of zeolite powder has an effect on decreasing the alkaline properties (Naigian et al., 1998). Zeolitic mineral admixture (ZMA) is made of the finely divided powder of natural zeolite with a bit of other agent such as triethanolamine. When ZMA is used to displace about 10% (by mass) of the ordinary portland cement (OPC) (strength grade No. 525) in concrete and mixed with a suitable amount of super plasticizer (W/C = 0.31 to 0.35), then a high-strength concrete with compressive strength of about 80 MPa and a slump of about 180 mm can be obtained. The strength of this concrete is about 10 to 15%

Test type		Standard	Test re	eport				
Organic material		TS EN 1744-1	Harmless					
l Init weight	Loose	TS 3529	2,40 g/cm ³					
	Compact	10 0020	2,57 g	/cm ³				
Sp	Specific gravity and water absorption ratio (TS EN 1097-6)							
Class of aggrega	ate		0/2	2/4	4/8	8/16		
Dry unit weight (g/cm ³)			2,05	1,56	1,67	2,45		
Saturated unit weight (g/cm ³)			2,29	1,63	1,70	2,49		
Water absorption ratio (%)			10,3	4,7	2,1	1,5		

 Table 1. Properties of the aggregate.

higher than that of the corresponding concrete mixed with pure OPC and its bleeding decreases greatly (Feng, 1990).

In this article, 2 sources was studied, rich in reserves, pumice and zeolite's effect on elasticity modulus which is an important criterion of HSC. For this reason we have designed 4 types of HSC with different ratios by guidance of the literature. We have performed deformation controlled compressive strength tests on concrete samples to determine elasticity modulus. Also elasticity modulus was determine using empirical equations given in national and international standards and determined the relation between 2 groups of data.

MATERIALS AND METHODS

Materials used

In this study, the following was used, 0/2 - 2/4 mm broken sand, 4/8 - 8/16 mm basaltic broken stone aggregate taken from Aegean region and CEM I 42.5 cement, pumice from Nevşehir region, zeolite from Balıkesir-Bigadiç region, Ankara city tap water, Glenium 51 type super plasticizer from Degussa construction chemical company. One type of aggregate granulemeter (TS 802, 2002) was used. The characteristics of the used aggregate types, determined the using of related standards given in Table 1. (TS EN 1744 -1, 2000; TS 3529, 1980; TS EN 1097-6, 2002).

The CEM I portland cement used as a binding material, pumice and zeolite's physical chemical and mechanical characteristics are given in Table 2.

Polycarbonic ether was use based new generation super plasticizer concrete admixture complying with TS EN 934-2 and ASTM C 494-92 type F "plasticizer concrete admixture" standards, for high ratio water reduction, concrete's stiffness loss prevention, necessity of high strength and durability TS EN 934-2, 2002; ASTM C 494-92, 1994). The technical characteristics of Glenium 51 type SAK obtained in +20 °C and 50% relative humidity is given in Table 3. We have used Ankara city tap water as mix water in this research. Used water's chemical analysis and related standard limit values are given in Table 3 (TS 266, 2005).

Method

We have used the software called "HSC mixing design" in microsoft excel spreadsheet application for the HSC mixing design complying with the methods indicated in TS 802 and ACI 211,1 standards and quantities determined by means of literature research (TS 802, ACI 211.1, 1994). We have produced 4 types of concrete, according to type and quantity of the mineral admixture used as a replacement for concrete. The information for the concrete types produced is given in Table 4.

We have used 3 pieces of having 10 x 20 cm dimensions cylinder samples for each group of concrete to determine the elasticity modulus. The material quantities and fresh concrete's characteristics of the samples used is given in Table 5.

Determination of the modulus of elasticity

For the determination of elasticity modulus, deformation controlled test setup was utilized. This setup can record longitudinal, lateral deformations and applied load every second. For each test sample approximately 100 data were recorded. These data were transferred to Statistica 7.0 software. By using this software stress- strain graphs, regression graphs, mathematical models and their fitting degree were determined. For the determination of elasticity modulus secant method and parobolical model were used together. Independent variable "X" is accepted as 40% strain value in the stress strain plot. Dependent variable "Y" was calculated using the independent variable "X". Accordingly by calculating the ratio of "Y" to "X" elasticity modulus "E" was calculated. In order to get concrete compressive strength length and width deformation of the samples under the load should be determined and was measured with data logger the load, length deformation and width deformation simultaneously every second using sample comparator mechanism shown in Figure 1.

We have determined a high statistical relationship between the observed strain unit deformation data. Starting from the observed relationship, we have reached parabolic form $y = ax^2 + bx + c$ model equations between dependent tension variable and independent unit deformation data. Using the Secant method which is a method to calculate static modulus of elasticity, unit deformation value which satisfies the stress that corresponds to 40% of the maximum stress value, is obtained from the model equation. We have determined the modulus of elasticity by taking the ratio ($\sigma(\epsilon)$ of these 2 calculated values (TS 3502, 1981; Neville, 2003; ASTM C 469, 1994). Turkish standards institute (equation 1), American concrete institute (equation 2), British standards institute (equation 3), committee Euro-international (equation 4), developed some empirical relations to calculate concretes elasticity modulus using concrete unit weight and compressive strength.

$$E = 14000 + 3250\,\sigma^{\frac{1}{2}} \tag{1}$$

$$E = 0.043 \,\omega^{\frac{3}{2}} \,\sigma^{\frac{1}{2}} \tag{2}$$

Prop	erties	Portland cement (CEMI 42.5 R)	Pumic	Zeolite	
Blaine finen	ess (m²/kg)	314	474,9	290,5	
Specific gra	vity (kg/m ³)	3.08	2,39	2,23	
Setting		135	-	-	
Final setting)	200	-	-	
Strength	7 days	244	-	-	
(kg/cm ²)	28 days	424	-	-	
Chemical p	properties	Weight percentage	e, %		
SiO ₂		19.80	71,93	77,54	
Al ₂ O3		5.61	13,14	13,25	
Fe ₂ O ₃		3.42	1,07	0,936	
CaO		62.97	0,76	2,156	
MgO		1.76	0,73	0,945	
SO ₃		2.95	0,02	0,06	
Na ₂ O		0.47	4,10	0,05	
K ₂ O		0.87	4,42	3,39	
Loss on ign	ition	2.17	4,11	-	
Bogue com	nposition	Weight percentage	e, %		
C₃S		54.88	-	-	
C_2S		15.88	-	-	
C ₃ A		9.08	-		
C₄AF		10.41	-	-	

Table 2. Properties of binders used for the HSC mix.

Table 3. Some properties of the super plasticizer and mix water.

Specifications of the super plasticizer admixture								
Color								
Density	1,082 - 1,142 kg/	1						
Chlorine % (EN 480 - 10)	< 0,1							
Alcali % (EN 480 - 12)	< 3							
Chemical analysis of system water used								
Parameters	Average value	Limit values (TS 266)						
Color	0.30	20						
Blurriness	0.30	5						
рН	7.35	6.5 ≤ pH ≤ 9.5						
Manganese (µg/l)	0	50						
Fluoride (µg/l)	0.5	1.5						
Chloride (mg/l)	8.0	250						
Total iron (μg/l)	<5	200						
Aluminum (µg/l)	55	200						
Ammonium (mg/l)		0.5						
Nitrite (mg/l)		0.5						
Nitrate (mg/l)	0.17	50						
Oxidation (mg/IO2)	2.2							
Remainder chlorine (mg/l)	0.7							

Figure 1. ^aComparator mechanism and data logger, ^bunbroken specimen and ^cbroken specimen.

Table 4. Concrete groups.

Group number	Replacement ratio (%)	Mineral admixture type	Concrete code
L.	15	Pumice	15P07
	0	Zeolite	
п	10	Pumice	10057
	5	Zeolite	101.52
	5	Pumice	50107
	10	Zeolite	5F 10Z
117	0	Pumice	00157
IV.	15	Zeolite	0F15Z

$$E = 9100(\sigma)^{\frac{1}{3}}$$
(3)

$$E = 9500 (\sigma + 8)^{\frac{1}{3}}$$
(4)

RESULTS

Calculated static modulus of elasticity for 4 groups of HSC produced in Table 6. In relation to Table 6, values of modulus of elasticity according to concrete's age and type are given in Figure 2.

Consistent with evaluation of empirical data with theoretical and regression model equations:

i.) 0P15Z type concrete has a decrease in modulus of elasticity with increasing concrete's age 7.5 and 2.48% respectively.

ii.) 0P15Z type concrete has a difference, between the modulus of elasticity estimates from the model equations and modulus of elasticity from the theoretical calculations, for TSE, ACI, BSI and CEP respectively of 19.2, 0.25, 6.85 and 19.51% in average on 28th day, 28.38, 9.11, 14.65% and 28.75% on 56th day, 32.57, 13.23, 18.51 and 32.89% on 90th day.

iii.) 5P10Z type concrete has a change in modulus of elasticity with increasing concrete's age 0.59% decrease and 5.76% increase respectively.

iv.) 5P10Z type concrete has a difference, between the modulus of elasticity estimates from the model equations and modulus of elasticity from the theoretical calculations, for TSE, ACI, BSI and CEP respectively 39.47, 16.90, 24.11 and 40.03% in average on 28th day, 45.08, 24.38, 28.96 and 44.48% on 56th day, 40.36, 23.12, 26.04 and 40.44% on 90th day.

v.) 10P5Z type concrete has an increase in modulus of elasticity with increasing concrete's age 2.98 and 1.53% respectively.

vi.) 10P5Z type concrete has a difference, between the modulus of elasticity estimates from the model equations and modulus of elasticity from the theoretical calculations, for TSE, ACI, BSI and CEP respectively of 41.12, 22.37, 26.28% and 41.41% in average on 28^{th} day, 31.35, 10.27, 16.63 and 31.96% on 56^{th} day, 31.90, 12.43%, 16.58% and 32.36% on 90th day.

vii.) 15P0Z type concrete has a change in modulus of elasticity with increasing concrete's age 1.5% decrease and 2.55% increase respectively.

viii.) 15P0Z type concrete has a difference, between the modulus of elasticity estimates from the model equations and modulus of elasticity from the theoretical calculations, for TSE, ACI, BSI and CEP respectively 34.58, 12.82, 19.34 and 35.28% in average on 28th day, 39.24, 18.34, 23.80 and 39.78% on 56th day, 38.55, 19.89, 23.74 and 38.93% on 90th day.

RESULTS AND CONCLUSION

In this study, pumice and zeolite's effects was investigated on HSC as a natural pozzolana empirically and theoretically. Nevertheless, the results acquired was compared. According to the acquired results.

If we compare 4 types of concretes used in the research, we have determined that; 0P15Z type concrete

Material	Туре	Specific gravity (g/cm ³)	15P0Z weight (kg)	10P5Z weight (kg)	5P10Z weight (kg)	0P15Z weight (kg)	Final total (kg)
Sand	0 - 2	2,13	2,139	2,188	2,236	2,285	8,847
Sand	2 - 4	2,30	0,866	0,886	0,905	0,925	3,582
Aggregate	4 - 8	2,55	1,281	1,309	1,339	1,368	5,296
Aggregate	8 - 16	2,63	1,651	1,688	1,726	1,763	6,827
Cement	PÇ 42.5	3,08	2,751	2,671	2,591	2,511	10,523
M. admixture	Pumice	2,39	0,486	0,314	0,153	0	0,952
M. admixture	Zeolite	2,23	0	0,157	0,305	0,443	0,905
SPA	Glm. 51	1,112	0,042	0,041	0,04	0,038	0,161
Water	System Water	1	0,971	0,943	0,914	0,886	3,714
Properties of free	sh concrete			15P0Z	10P5Z	5P10Z	0P15Z
Water/ cemet rat	tio			0.3	0.3	0.3	0.3
Slump (cm)			0.2	0.7	1.1	1.7	
Theoretic results	s of unit weight (kg/i	m ³)	2163	2165	2167	2169	
Experimental res	sults of unit weight	(kg/m ³)	2295	2357	2356	2293	

 Table 5. Material quantity in the mix for each concrete groups.

Table 6. Modulus of elasticity values calculated with different methods of HSC.

Concrete type	Concrete age	Specimen number	Model equation $y = ax^2 + bx + c$ y: Stress (N/mm ²) x: Strain	Compressive Strength (MPa)	R ²	Elastic modulus Prediction (MPa)	Turkish Standards Institute (MPa)	American Concrete Institute (MPa)	British Standards Institute (MPa)	Committee Euro- International (MPa)
		1	$y = -2E + 06x^2 + 27276x + 0,1178$	81,4	0.996	24729	32546	27645	29060	32642
	28	2	$y = -2E + 06x^2 + 29708x + 4,5278$	83,6	0.976	31934	32800	28012	29324	32881
		3	$y = -2E + 06x^2 + 28049x + 0,0308$	87,2	0.999	25673	32800	26888	29324	32881
N		1	y = -2E+06x ² + 27684x - 1,9617	81,7	0,994	26855	32593	27703	29108	32686
P1	56	2	y = -920877x ² + 26037x - 0,1573	85,3	0,999	25382	32986	28289	29518	33056
0		3	y = -1E+06x ² + 25400x - 0,2173	78,3	0,999	23918	32192	27106	28688	32308
		1	y = -1E+06x2 + 25575x +0,1841	77,1	0,998	24460	32057	26887	28546	32180
	90	2	y = -1E + 06x2 + 26678x - 0,5483	84,0	0,999	24929	32847	28063	29373	32925
		3	y = -946379x2 + 26116x -0,1933	90,4	0.999	24870	33543	29138	30092	33579
		1	y = -1E+06x2 + 23765x - 0,5735	76,4	0,999	21960	31969	26808	28453	32097
	28	2	y = -1E + 06x2 + 25464x + 0,1293	78,9	0.999	24268	32269	27255	28769	32380
		3	y = -937403x2 + 23394x - 0,4096	73,4	0.99	22494	31612	26275	28075	31760
NO		1	y = -945675x2 + 23643x - 0,6962	104	0.999	21455	34967	31382	31537	34910
Ē	56	2	y = -855829x2 + 23354x - 0,2987	89,4	0.999	21771	33445	29103	29991	33486
ŝ		3	y = -2E+06x2 + 28633x - 1,5317	66,0	0.995	25088	30700	24995	27098	30898
		1	y = -2E+06x2 + 27282x - 0,2789	88,8	0.999	24151	33371	29067	29915	33418
	90	2	$y = -2E + 06x^2 + 30090x - 2,0922$	86,1	0.998	25854	33079	28629	29614	33143
		3	y = -945675x2 + 23643x - 0,6962	104	0.999	22246	34967	31261	31537	34910
		1	y = -1E + 06x2 + 26737x - 0,3526	89,0	1.000	25071	33399	29220	29943	33443
Z9c	28	2	y = -2E + 06x2 + 24850x + 0,6682	84,8	0,989	21239	32931	28515	29460	33004
		3	y = -2E+06x2 + 25919x - 0,0627	82,3	0,991	23828	32650	28093	29168	32740
10		1	y = -4E+06x2 + 31335x - 3,1848	63,3	0.998	24103	30359	24642	26728	30575
	56	2	y = -1E+06x2 + 26532x - 0,2571	81,0	1.000	25024	32508	27879	29020	32606
		3	y = -1E+06x2 + 26462x - 0,2278	76,8	1.000	23108	32017	27139	28504	32143

Table 6. Contd.

		1	Y = -1E+06x2 + 28110x - 0,1919	79,5	0,999	26750	32336	27620	28840	32444
	90	2	y = -635959x2 + 23462x + 0,3037	78,1	1.000	22823	32173	27374	28669	32290
		3	y = -2E+06x2 + 26665x - 0,3222	78,7	0,999	23774	32240	27475	28739	32353
15P0Z		1	y = -1E+06x2 + 24812x - 0,5195	69,2	0.999	23183	31106	25898	27535	31282
	28	2	y = -1E+06x2 + 25139x - 0,1747	75,8	1.000	23771	31900	27100	28380	32032
		3	y = -1E+06x2 + 25005x - 0,1232	69,2	1.000	22971	31106	25898	27535	31282
		1	y = -2E+06x2 + 26832x - 0,6121	87,4	0.999	23436	33227	29072	29766	33282
	56	2	y = -1E+06x2 + 24156x - 0,3299	57,6	0.999	22812	29600	23588	25894	29856
		3	y = -1E+06x2 + 24760x - 0,9327	86,1	0.999	22628	33079	28849	29614	33143
		1	y = -2E+06x2 + 26113x - 0,1802	80,7	0.999	23201	32470	27999	28980	32570
	90	2	y = -2E+06x2 + 26749x - 0,646	78,2	0.999	23621	32182	27562	28678	32298
		3	y = -1E + 06x2 + 25143x + 0,2203	87,4	0.999	23816	33217	29131	29756	33273

Figure 2. Modulus of elasticity values according to concrete age and concrete type.

has maximum decrease in its modulus of elasticity by increasing concrete's age, 5P10Z type concrete has maximum increase in its modulus of elasticity by increasing age, 10P5Z type concrete has similar characteristics of elasticity with 5P10Z type concrete and 10P5Z type concrete has minimum increase in their modulus of elasticity by increasing concrete's age.

For every type of concrete, the difference between the calculated average modulus of elasticity values obtained from theoretical methods and calculated average modulus of elasticity values obtained from model equations of empirical data, is increasing with the increasing concrete's age. This difference is minimal for 0P15Z type

concrete and maximum for 5P10Z type concrete.

The difference between the calculated average modulus of elasticity values obtained from model equations of empirical data and the values obtained from the formula offered by ACI is observed as minimum and the difference between the modulus of elasticity values from model equations of empirical data and the values from the formula offered by TSE and CEB is found as maximum. For every type of concrete, among the theoretical formulas to calculate modulus of elasticity, TSE and CEB formulas gives similar results to each other and ACI and BSI formulas gives similar results to each other.

With increasing pumice amount in concrete, the diffe-

rence between the estimated average values of elasticity modulus and calculated average elasticity modulus reaches to double.

In 4 groups of concrete types, with increasing pumice amount and decreasing zeolite amount, the average estimated modulus of elasticity values show 16.53% decrease, 2.06% increase and 0.30% decrease in 28^{th} day, 10.29% decrease, 5.73% increase and 4.56% decrease in 56^{th} day, 2.70% decrease, 1.51% increase and 3.69% decrease in 90^{th} day.

Mineral admixtures with different types and ratios resulted in different elastic behavior of concrete. It is tough that this behavior is due to concrete's composite composition and binding difference between cement matrix and aggregate depending on mineral admixture type and amounts.

Increase of elastic behavior depending on time factor of different concrete types, is due to the strengthening of binds between cement and aggregate which is a result of pozzolanic properties of mineral admixtures.

If the study is analyzed, we can conclude that the increase of pumice amount in HSC, affects the modulus of elasticity - which is a very important parameter of a HSC negative in the early ages, but this negative effect decreases by passing time. We can evaluate this as the active role in concrete played by the used pozzolana's in the later stages. The increase of zeolite amount with decreasing pumice amount in HSC shows positive effect for modulus of elasticity in all ages. Nevertheless, comparing the estimated modulus of elasticity values and the empirical formulas provided by some institutions, we can conclude that the formula offered by ACI provides more parallel results. The formula offered by ACI to calculate modulus of elasticity includes compressive strength and unit weight together and this can be a reason to obtain more parallel results. The effects of pumice and zeolite's to the other properties of concrete should be investigated.

ACKNOWLEDGEMENT

This study was funded by the Project No. 07/2007-31 supported by the Gazi University, Unit of Scientific Research Projects.

REFERENCES

- ACI 211.1 (1994). Standard practice for selecting proportions for normal, Heavyweight, and mass concrete, ACI Manual of Concrete practice 1: 211.1-1 to 211.1-38.
- ASTM C 469 (1994). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, Annual Book of ASTM Standarts.
- ASTM C 494-92 (1994). Standard Specification for Chemical Admixtures for Concrete, Annual Book Of ASTM Standarts, Concrete and Aggregates, American Society for Testing and Materials", Phildelphia 4(2): 251-259.
- Çetinel G (1993). Zeolite in the World wide and Turkey", General directorate of mineral research and explaration, Ankara pp. 37-55.

- Erdogan TY (2003). Concrete", Middle East Technical University Press, Ankara.
- Feng NQ, Li ZG, Zang XW (1990). High-strength and Flowing Concrete with a Zeolite Mineral Admixture, Cement and Aggregates, ASTM. 12: 61-69.
- Goldman A, Bentur A (1992). Effects of Pozzolanic and Nonreactive Microfillers on Transition Zone in High-Strength Concretes", Proceedings, Interfaces in Cementitious Composites, J. C. Maso, ed., RILEM, E and FN Spon, London.
- Gündüz L, Sariisik A, Tozacan B, Davraz M, Ugur I, Cankiran O (1998). Pumice Technology" Isbas A. S. and Sdu College Of Engineering, vol: 1, , Isparta, Turkey.
- Hilsdorf HK (1995). Performans criteria for concrete durability", 2nd ed., Hilsdorf, H., Kropp, J., Rilem E and FN spon, London.
- Hossain MA (2003). Blended cement using volcanic ash and pumice, Cement and Conrete Research 33(10): 1601-1605.
- Khandaker M, Hossain MA (2003). Properties of volcanic pumice based cement and lightweight concrete, Cement and Concrete Research, 34: 283-291.
- Kılıç A, Atıs CD, Yaşar E, Özcan F (2004). High-Strength Lightweight Concrete Made with Scoria Aggregate Containing Mineral Admixtures, Cement and Concrete Research 33(10): 1595-1599.
- Koca C (1996). Utilization of microsilica slag cilinker mix on the production high performance concrete, 4nd National concrete congress, Istanbul pp. 381-394.
- Mehta PK (1986). Concrete structure properties and materials", Prentice Hall, Inc, Englewood Cliffs, New Jersey.
- Mindess S, Young JF (1981). Concrete, Prentice- Hall Inc., New Jersey, USA.
- Mumpton FA (1973). World wide deposits and utulisation of natural zeolite, Industrial Zeolites pp. 2-11.
- Naiqian F, Hongwei J, ve Envi C (1998). Study on the suppresion effect of natural zeolite on expansion of concrete due to alkali-aggregate reaction, Magazine of Concrete Research 50(1): 17-24.
- Nawy EG (2001). Fundamentals of high performance concrete, 2nd ed., John Wiley & Sons, Inc., Canada.
- Neville AM (2003). Properties of concrete, Fourth and Final Edition, Pearson Prentice Hall, England.
- Sarı D, Paşamehmetoğlu ÅG (2005). The effects of gradation and admixture on the pumice ligtweight aggregate concrete, Cement and Conrete Research 35(5): 936-942.
- Shah SP, Lange AD, Li Z, Mitsui K (1994). Relationship Between Microstructure and Mechanical Properties of the Paste-Aggregate interface, ACI J. 91: 30-39.
- SPO (2000). Construction Materials, T.R. prime ministry state planning organization report, Ankara pp. 617-628.
- Subaşı S (2009). The effects of using fly ash on high strength lightweight concret produced with expanded clay aggregate, Sci. Res. Essay 4(4): 275-288.
- TS 266 (2005). Water intended for human consumption, Turkish standards institution, Ankara.
- TS 3502 (1981). Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, Turkish standards institution, Ankara.
- TS 3529 (1980). Test Method for Determination of the Unit Weight of Aggregates for Concrete, Turkish standards institution, Ankara.
- TS 802 (2002). Design concrete mixes, Turkish standards institution, Ankara.
- TS EN 1097-6 (2002). Tests for mechanical and physical properties of aggregates- Part 6: Determination of particle density and water absorption, Turkish standards institution, Ankara.
- TS EN 1744 -1 (2000). Tests for chemical properties of aggregates-Part 1: Chemical analysis, Turkish standards institution, Ankara.
- TS EN 934-2 (2002). Admixtures for concrete, mortar and grout Part 2: Concrete admixtures; Definitions, requirements, conformity, marking and labeling, Turkish standards institution, Ankara.
- Walraven J (1999). The Evolution of Concrete Structural Concrete, J. Fib. 1: 3-11.